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FOREWORD 

This paper establishes properties of the optimal decision 
rules for a particular class of chance-constrained programming 
problems. The type of problem considered is an n-period model 
in which each period generates exactly two constraints. One of 
these constraints couples the decision rule of the |th period to the 
decision rules of all succeeding periods, while theother is a con- 
straint requiring the decision rule to be nonnegative with at least 
a specified probability. Necessary and sufficient conditions for 
optimality are derived and related to results in the calculus of 
variations. 

One application of the mathematical developments presented 
in this paper is described in RAC-P-12, "Application of Chance- 
Constrained Programming to Solution of the So-Called 'Savings 
and Loan Association' Type of Problem." 
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ABSTRACT 

This paper deals with an N-period E model of chance- 
constrained programming in which each period i ~ 1, . . ., H 
generates exactly one new constraint. It is shown that there 
are cases in which the problem can be reduced to one of sol- 
ving M rather simple one-variable nonlinear programming 
problems. 

The results of this paper are illustrated by means of 
an example giving the solution of a two-period problem of 
planning for liquidity in a savings and loan association. 



T— 

1.  INTRODUCTION 

In a previous paper1 the authors established certain necessary conditions 
for decision rules to be optimal for the block triangular n-period E model of 
chance-constrained programming. This paper is concerned with a more re- 
stricted problem than the one considered in RAC-TP-166.1 In particular an 
«-period E model is considered in which each period [ - 1, . . . ,n generates 
exactly one new constraint rather than m, new constraints as in the earlier paper. 

This restriction leads to a problem that is easier to handle mathematically 
than the more general case considered in RAC-TP-166,1 about which much more 
can be said.   In fact, in certain cases the problem can be reduced to one of solv- 
ing n rather simple one-variable nonlinear programming problems.   Moreover, 
in the event that each of the random variables involved in the problem has the 
same distribution, the complete «-stage problem can be reduced to solving one 
of these simple nonlinear problems. 

In addition, two generalizations of the problem in RAC-TP-1661 are con- 
sidered here.   First, instead of having the i th constraint be of the form 

|M "MV-". 

which would be the triangular version of the block triangular «-period problem, 
the ith constraint is allowed to be of the form 

(v   a o. 

where d, is a constant and u;, ( b,, . 
function of the random variables b. 

) is an arbitrary piecewise continuous 
Second,the nonnegativity con- 

straints Xj ^ 0, | - 1, . . . ,«, used in RAC-TP-166' are replaced by the more 
general constraints PIX.    0) - 0,, | = 1,. . . , « , where (J,  is some preassigned 
probability. 

The effect of this second generalization is discussed at length.   It is shown 
that restricting \. to be nonnegative only 100/J, percent of the time, rather than 
all the time as was done in RAC-TP-1661, greatly increases the mathematical 
complexity of the problem.   In addition the interesting result is derived that 
when such a constraint is tight, the optimal rule is often discontinuous where 
it was previously continuous.   From other points of view, this result is to be 
anticipated.   For example (S.s) policies," when optimal, in inventory theory have 
this property, as do many solutions of optimal control problems.' 

The simplification that results when all the preassigned probabilities arc 
equal to 1 is also illustrated.   In this case the optimal decision rule for period i 
is a piecewise linear function of the decision rules of periods 1, . . . ,i   1, and 
the pieces can be easily found. 



An example of the application of the results of this paper to a problem in 
financial planning is contained in Charnes and Kirby,4 which gave a solution of 
a two-period problem of planning for liquidity in a savings and loan association. 
In this model the fact that the optimal decision rule is in general discontinuous 
is surprising, but it can be explained by economic arguments. 

|Mu2|\|   I   «22 ^   •   ^2^2   *   '"VM'    ^   0)   >   aj. 

'"("llN   '   fl32X2    *   fl33V3  +   i3b3    *   '■>3{b\'b2)   ^  0)   ^   ^3 • 

''(,*,V\ ♦ d.b. * ''."'i b.-i) -0)- "■• 

''(^.W  d"b,' ^""'N K-O  i0) K_ 

2.  STATEMENT OF THE PROBLEM 

The problem to be considered is: 
maximize 

1   E(f.X,) 

subject to 
l,(a11\| * dfhf  * ü,,  i 0) 2 a,. 

fMX,   _ 0)   2 ^J-l n, (1) 

where P and E represent the probability and expectation operators, respectively. 
The probability and expectation is computed by using the joint distribution of all 
the random variables involved in the problem. 

In Problem 1 the following assumptions are made: , 
(a) a,, , i >| , i, i ^ 1, . . . ,«, d,, c, ,i = 1, . . . ,II, and w, are given constants, 

and a,, ^ 0, d, / 0 for all«. 
(b) »,, 0, ,i , | - 1, . . . ,n are known probabilities.   Thus 0 « otj, & * 1 for 

all i and |. 
(c) the b, , i - 1, . . .«   are continuous random variables whose joint fre- 

quency function („(b,, . . . ,hj is known. 
(d) X , | - 1,... ,n is a function of the random variables bi, . . . ^^ . ' 

but it is not a function of b,,. . . ,b„ .   Thus we will solve Eq 1 for Xj ^ Xj 
(bi, . . . .bj,,). 

In Sec 5 we will consider the more general problem that arises when 
we allow c,, , . . ,cn to be random variables rather than constants as they are 
in assumption a.    However, since some of the work in Sec 3 does not extend 
to this case we will for the moment assume that c(, | = 1, . . . ,n are given 
constants. 

I 



Assumption d  is due to our interpretation of the problem. 
to treat Problem 1 as an n-period, or «-stage, problem in which ..,, 

We are going 
Xj , the de- 

cision rule for the )th period, is selected after all previous decisions X'j,. . ..Xj,, 
are known and after the values of the random variables of periods 1 toj - 1 
have been observed but before bl and all random variables and decisions of 
periods j + 1 to n have been observed 

In other words, Xj, the first-period decision rule, must be selected before 
the value of the first-period random variable Ih is observed. Then, when we have 
selected Xi and observed bit the second-period decision rule X2 must be chosen 
before the value of 63 is observed.   This process continues with X, depending 
explicitly on X,, b, ,1 = 1, . . . ,| - 1 and only implicitly (i.e., through the coupling 
effect of the constraints) on b/ and X,, b,, 1 =) +1, . . . ,B.  It is this interpretation 
that led us to make assumption d. 

The set Q,, 1 = 1, . . . ,n, in 1-dimensional Euclidean space is defined as 
the set of points (b,, . . . .b,) for which (({b,, . . . .b,) > 0, where ^(bi, . . . .b,) 
is the joint frequency function of b,, . . . ,b,.   Since we have, by definition of 
^(b,, . . . .b,), the identity 

Wi a,"'i .0 ■ "V 

it may be seen by assumption  c  that f, {b^ ...,!>,) is a known function.  It is 
important to note that no restriction on Q, as a bounded set has been made. 
Thus it may extend to 1 r in any, or all, of its 1 dimensions. 

F, (.) is used to represent the multivariate cumulative distribution function 
of the random variables b,, . . . ,bl.   We will write 

FAG)  ■   /. HM, .b,)db db. 

- 

where G is any subset of i-dimensional space. 
One more restriction must be placed on our problem in order that the 

differential equations method of the isoperimetric theory of the calculus of 
variations may be used. 

Assume that for each s, s = 2, . . . ,n, there exists a set of s - 1 dimen- 
sional rectangles, say [Al'1, f(i's~l], where i'5-1 is some indexing set, such that 

Ö?  1 c    ,iJ.   , AS-1, where Q,  . is the closure of Q,  ,, 

F^U*-') > 0, for alKf i'*- 

(i) 

(ii) 

(iii) 

(iv) 

1 

■1 lafe 

tinuous in 
lv) 

As- 
X* 

w. iVfl.ss^s 

= 0, for all 
s- 1 

fc.if i'"-1 and  b / c 

)-1 
«srS wB Xr) 1 , s - 1 and \* are con- 

1 for all Ui's-', 
is of constant sign in Ay 1 for all ^i's- 

where/s(.} is the conditional frequency function of bs given b, 
X* is an optimal 

,h    , and 
Xsfor 

i,   ii, and  iii say that ( Asf', *■( I"*-'] divides 0S_, into a set of s - 1 
dimensional rectangles such that the probability that a random point (b,, . . . 
bs_l) in Qs^is in any one of these rectangles is greater than zero, and the 
probability that (bi, . . . ,bsj) is in the intersection of any two rectangles is 
zero.   In both caseu the probability is computed using the frequency function 



■ 

> 

fs-iC»)! • • • .^s-i'-   Moreover, using well-known properties of any distribution 
function (i.e., for discrete or continuous random variables), it is easy to show, 
using properties ii and iii, that there is at most a countable number of rectangles 
A)-1 with 'ci,s-1. 

It is always possible to find {Af'1, 'f i>s-'t with properties i, ii, and iii and 
such that fs_i is continuous in each Ajr'.   It follows then that an assumption 
equivalent to iv would be that Xj, j = 1, . . . ,n, and Wjlb,.... tbij, | -1,. . .,n 
are each continuous functions with a countable number of discontinuities.   Thus 
iv does not restrict our problem to any significant degree. 

It is important to realize that the set of rectangles {A8»-1, 'f i"*-1] defined 
above depends critically on Xs.  In other words, there may well exist other 
feasible (but not necessarily optimal) decision rules for Problem 1 that would 
generate a covering of Qs_1 different from the one given by [Ajr1, tef5-'}.   How- 
ever, because the chief concern is with deriving necessary, rather than sufficient, 
conditions for \* ,   only [ \s

(-', f ri'1*-1}, henceforth referred to as the "optimal 
partition" of Qs_i, is considered. 

It must also be emphasized that Xs, an optimal Xs, is not necessarily 
unique.   That the solution of Problem 1 is not unique follows from the fact that 
any other decision rule Xs' that is such that   ... .Jfs-i'M'i. . .dbs_i - 0, where 
A     fib,,... tb^t): Xj ^ X^ ], will satisfy the constraints of Problem 1 and have 
CsEtXs) - csE(X*).   Hence Xs' will also be optimal for Problem 1; i.e., the optimal 
decision rule for Problem 1 is, in general, nonunique—at least on a set of meas- 
ure zero.   This trivial nonuniqueness can of course be avoided by adopting a 
convention such as making X* right (or left) continuous.   However, this is not 
the only kind of nonuniqueness that can occur.   In Sec 6 a situation is illustrated 
in which the optimal rule fails—in a very significant way—to be unique.  In fact 
the situation is such that two optimal rules could fail to be equal for every point 
(bi, ■ . . ,bs_j)<Qs_, . 

In order to solve Problem 1, rewrite the ith constraint using assumption a. 

'(^.Vi  ' dA * 'V'I f-,-!1 - 0) 

•('.--i,TW4 
f..r d 0, 

for   ä.        t). 

let 

Let I ' be the set over which 

h, - - v «;, \ 
Then 

i   i 'i   i        i 

I...  If,, (I.,     • .JhMt. 

by our interpretation of the P operator. 

md 



By assumption d, 1 is only a fun tion or b 1, ••• ,b1_ tt and o the t r • 
depends only on b,, ... ,b,. Hence the above integration an be performed 
first with respect to b1 , ; - i • 1, ... , " and then with re pe t to b1, i = 1, 
. . . ,i . But integrating with respect to b1, 1 = i + 1, . . . , n , we are integrating 
the joint frequency function or the various random variables over their entire 
range or possible values (i.e., over all the values that they an take on with 
nonzero probability}. Sin e the value or this integral i 1, 

f .... (" db, ... db" f .... f , db, ... db , 
I ' ' 1' 1 

where F, (.} is the ondltional distribution fun tion of b1 gi en b1, ••• ,b1_ 1 • 

This la t equation is obtained by h ldin b~t ... , b,_, fix d and integr ting r 
r• with re pe t to b, . 

Similarly for d, 0 

f'(, ~ I a IJ ', I d 1 b 1 t u 1 - o) I - j :._ · · · f -, ( - J ~I 11 ; , \ J - 1 ':) f, - I J b I · · · J b 1 - I · 

• - I 

' , , , 1 , , 1\
1
> - , , f. :. . I ', t .. db , .. u b" • , J ... . J , , r, _1 db, ... d ,_ , . 

Q.. J-1 

Therefor Problem 1 an be writt n in th f ll wing f rm: 
maximiz 

ubje t to 

I' l ', - I - ~~ , J I , .... 11 , (2) 

wh r 

{ 

:1
1 

if ~n (d
1

) • • I ( , .«"., if d
1 

.~ ; 
.1

1
-l ,r n l d

1
) -1 lt. .. .r d

1 
I. 
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I - 1, ... ,n.   By defining a,,     - a^ , and c;'    - UJ,' Problem 2 can be written as 
maximize 

V 

l~l 
'-, I-. ■■ ' Sfl-i'"'i- -^,-1 

Q i-i 

subject to 

'l{i\<;\' ■■,")i,-iJ''1...ih,_1 - i - j,, i 

(V - 0) z « ,)=1 n. (3) 

For the sake of notational convenience the primes will be dropped from 
a' and wj' throughout the remainder of the paper.   Moreover, the region of in- 
tegration will no longer be explicitly written out, but it will be implicitly under- 
stood that when we integrate using the frequency function f,., i - 2, . . . ,« the 
region of integration, unless otherwise stated, is Q,., . 

Finally, assume in what follows that |c, E(.\'*) | < », j = 1, . . . ,n and that 
there exist decision rules Xf, 1=1,... ,n that are feasible for Problem 3. 
Various ways of modifying a chance-constraiiied problem, when the constraints 
are inconsistent or the optimal value of the objective function is unbounded, 
are discussed at length in a previous paper. 

3.   SOLUTION OF THE  Sth SUBPROBLEM 

By the Sth subproblem the following is meant: 
maximize 

t-j. . .,j xj^db, . . . Jh^.., 

subject to 

r^( VMN • 'v)(s-l''V-'"'s-l   -  ! 

IMX,   10)   1 ßf . (4) 

In Problem 4 it is assumed that V, (5,, . . . ,bM), j- 1, . . . ,s-] are given 
functions and that the optimal Xs{l»i, . . . .b,.!) is sought.   Furthermore, it is 
assumed that the given functions X,, )    1, . . . ,s - l,and all feasible Xs. satisfy 
the requirements imposed on X,, ) - 1, . . . ,n in the preceding section.   Thus 
Problem 4 is to be solved for the optimal Xs as a function of ws and the given 
decision rules Xj, . . . ,X\,_].   In Sec 4 the results of this serJon and an inductive 
argument to solve the n-period Problem 3 are used. 

Let X* be an optimal solution for Problem 4. 

4 



Let 

V" 
'.{KX ■ ^V.x, ■ .v)^,."-, dh. ,. f(,r .■,.,!,  r, i' 

IC: \' . f)  ,„   \--1. 1'. V 

) M: \*. (i m \:-|.i. v--'| 

Now consider the following localization of the problem: 
maximize 

W 
VJ,_r'"' i u"i ,th 

subject to 
-i 

,   i   ''  ' 
...),,. I""I Jh, (5) 

with the additional constraint that Xs -- 0 if 'fl'and X, > 0 il 'f /'.   Clearly, 
Lemma 1.   The optimal continuous .\s for Problem 5 is \*\ -V], ' , the re- 

striction of X* to A|-'. 
Proof.    X*| As-' is feasible for Problem 5 and is continuous from our 

definition of Ay1.  Also if X*| A*-1 was not optimal for Problem 5, then X* would 
fail to be optimal for Problem 4, since on A*-1 its contribution to the objective 
function of Problem 4 could be improved. 

Lemma 1 shows that a necessary condition that X* be an optimal decision 
rule for Problem 4 is that for each As-1 , /cl's-', X* be the optimal continuous 
solution for Problem 5.   Further necessary conditions on V are now obtained 
for Problem 5, using variational theory. 

Theorem 1 

A necessary condition for X*|AjH to be the optimal continuous Xv for 
Problem 5 is that for each point (b,, . . . ,bs_i) in A^rVeither X*(b,, . . . ,bs_l) 
0, or fsUss X* i Z^'-'l as, X, » wj = - cs  A ass where A is a constant. 

Proof.   Let td'.   Then in Problem 5 we will make the change of variable 
\s     Z^.   The following problem is now solved: 
maximize 

subject to 

', i 
-i ^-i'"': 

■ ■ ■ I hi'K. ^ i.   .i    \ l.-'H', äh (G) 

for the optimal continuous function 2s(bi, . . . .b^,). 
Problem 6 is a multiple integral isoperimetric problem in the calculus 

of variations.   In App A it is proved that the assumptions about ■'Aj  ' , 'f V   ' 



are sufficient for the derivation of the Euler equation   •(!,  ?ZS     0, where 
M(bi, . . . ,bs_,) is defined by 

IM', Al ^--■t"^    '">)'>- 
and X  ■ 0 is a constant. 

Since the Euler equation provides a necessary condition for Z* to be optimal 
for Problem 6,   '11(1*)     Zs - 0 implies 

;'J, ^J^KX
2
 ■ %^\ • '.,) (7) 

and Eq 7 must hold for all points in Ay' . 
Since any point (bu . . . ,!),,_,) for which f^, 0 contributes nothing to the 

objective function or the constraint of Problem 6, only points for which fs_, ~> 0 
will be considered.   Hence we conclude from Eq 7 that at such points 

^^•;*!%v ■•-) A,j 
,i i ciiNtunl. 

i.e., 

cillllT       V*    -    (I   . 

\ i-l      ' /        An 
(8b; 

Since either Eq 8a or Eq 8b must hold for every point in Aji-1, the theorem 
is proved for tfl'.  Since a similar result can be obtained if '(]', the theorem 
is proved for all 'ei,s~'. 

The set of rectangles    A^r', 'ei'^1]   is  now redefined to be such that, in 
addition to having properties i-v of Sec 2, they also have the property that 

(vij   eithpr \* is identically zero in A"V   or else 

V 
i <i 

i  "., 
\   -  — 

where Tf is a constant such that there exists a solution Zlb,, . . . ,bs ,) of the 
equation fs(Z* ~ 7j.s* for each point (b,, 
f-[( !>*) is defined for each point (b, 

s» 

. A^kAV'.and:*^,, . . . ,b>..,) = 

.b,,,) by :*( b,, . . . .bs.i)     max 
Z'.fsiZ)     T^ ].   That such a set of rectangles exists follows from the fact 

that in each As
(.~' defined in Sec 2 X* is continuous; hence, by Theorem 1, each 

Ay ' can be partitioned into a set of rectangles, say Asf r<A1' such lhat 

in each A'f,   properties i to v and property vi hold.   The subscript r can then 
simply be dropped to make notation easier.   Thus Corollary 1 is obtained. 

Corollarv 1.  A necessary condition that X* be the optimal  \, for Problem 
4 is that there exists a set of rectangles [ A"f    , '(V with properties i-vi. 

10 



Let I = if'-X*s ■ 0 with strict inequality for some points in Af"1 

Let j [l: \*-i 0 with stric-t inequality for some points in A5-' 
Let K      [': X* is identically zero in A^' }. ' 

Consider the problem 
maximize 

I.I.I "-  A;,-' 

-I lip I,.,.)!,, . . ..II.^, 

r",|1'   ^1| ± —\• — k I   I ".,  '    "-J 
, d (.,... l( (I (9) 

subject to 

i.   i i (f^n^K. i'i''i ■■•'">,,.i - i - (9a) 

I I   I     I   I 
.   ,ill   lb, ''._! !'  \| "'   ■■"'!   I ■ I (9b) 

••.r;. 
.-i 

".. v all   U), ■i''V 
.1 I, I (9c 

V - (,: - V'1''1' (9d) 

where V(,
s, VI are constants and 

\      1   i.... i l 
r < K   ^ -' Cv-v-) Jh 

Problem 9 was obtained by using the expression for \* given by Corollary 
1.  Problem 9a corresponds to the first constraint of Problem 4; Problems 9b 
and 9c express the fact that \*  ? 0 in A)"   for 'el, and \* - 0 in A,"' for '«■/; 
Problem 9d gives upper and lower bounds on T('   in Ap" , which assure us that 
ff(T^) is defined in Ap" , i.e., that there exists a solution of f„(Z) = Tf for each 
point in A"p-   for 'f I, 'cJ. 

Now find  T/1, 'cl, 'f/, as a function of \v~   and thus reduce Problem 4 to 
Ar ifi'»- determining the optimal partition 

Clearly, 
Lemma 2.   Tp   , 'rl, 'ej, are the optimal fp  for Problem 9. 
Proof.   Proceeding exactly as in the proof of Lemma 1 easily proves that 

if Tp   are not optimal for Problem 9, then a contradiction exists, since this 
implies that \^ is not optimal for Problem 4. 

Using the fact that we are trying to find Tp   as a function of Ap"1 and that 
[-'(.), u)s, and X., j - 1, . . . ,s-l are known functions uf b,, . . . ,bs_t, permits 
replacement of Problem 9b and Problem 9c by conditions that give upper and 
lower bounds on  rr .   Combining these new bounds with Problem 9d and dropping 

11 



the second term in the objective function of Problem 9, since it is independent 
of Tf , permits writing Problem 9 as 
maximize 

). . . . I 
'-'■I  \y 

subject to 

r,[rr1,p]i.-l<"'i■• d^-i -'-^ - ^ 

i;, - r/ - n;, r,i. ci . (io) 

where Lj!   Uji are constants. 
Employing a simple Lagrange multiplier argument makes it easy to es|ab- 

lish that a necessary condition that TV   be optimal for Problem 10 is that Tp 
take on one of the three values L), U^, or T *, where Ts* is a constant that does 
not depend on ' and so Lj i Ts   s Up  for all Ul,}.   Moreover, if Tp   is equal to 
l!f  or Up , then it is also equal to V/ or ty .  In other words, Tp    cannot equal 
the bounds on T^ obtained from Problem 9b or Problem 9c unless these bounds 
are the same as those given by Problem 9d. 

Thus Theorem 2 is proved. 

Theorem 2 

There exists some constant, say T   , such that Tp   takes on one of the three 
values  Vps, »/, or Ts*, and Vps s T5* ^ »ps for l(l,U]. 

4.   THE   M-PERIOD PROBLEM 

Theorem 3 

A necessary condition for X*   j = 2, . . . ,» to be optimal decision rules 
for Problem 3 is that for each j a set of rectangles [ A(~ , l(i's~l] exists with 
properties i-vi as defined above, with X, replaced by X* in iv and vi. 

Proof.   The theorem is proved by induction on t where s - n + 1-1.   Begin 
by proving the theorem for I = 1, i.e., that it is true for X*.   Then assume for 
induction that the theorem is true for f = k, i.e., for X^i^, X* , and then 
prove it is true for «    k f 1, i.e., for X*^ . 

Let ( - 1. 
Let Xi, . . . ,\n_i be feasible decision rules for the first n- 1 periods. 

Then the problem of determining X* is equivalent to solving Problem 4 with 
s    n.   Using Corollary 1, it can be seen that Theorem 3 is true for t - 1. 

Assume for induction that the theorem is true when t = k, i.e., that it holds 
for X*_fe)1 , . . . , X*.   Now prove the theorem is true for l = k+ 1, i.e., for X*_fe. 

Using the induction hypothesis, the expressions for X*_fe + 1, . . . ,X* can be 
put into the objective function of Problem 3 to get 

| - n - I; . 1      ' ' | - n - b . 1     'If        y - I 

I 

i-l a 
\ V       "  v* 

11 

i,.,'"!^, (ll) 

12 



in which only those if i')-1 for which X*     is not identically zero are summed 
over.   By integrating Eq 11 with respect to b,.,, j = »-k + 1, , . . ,B, the resulting 
integral, with respect to b,, . . . »b,,.^,, is such that the integrand is a piecewise 
linear function of 
is written as 

XT, 1 = 1, 

n -1; 

i 1   |.   ..   . 
■ ii - k 11 f      .|-1 

t 

i - k. I 

I  \* 

,n-k .   To see this the right-hand side of Eq 11 

'•A ',-!'"', 

r-i 

. Jh 

'P 

i-i 

.iJhi .db 
I-I (12) 

where fej, is a constant that depends on the various a,, . However, it is known 
that \* is a function of only bi, , . . .b,,,, so that for each i we can perform the 
integration in the first term of expression 12 by integrating first with respect 
to b, , . . . .b^,, and then with respect to b,, . . . .b^,.   Integrating with respect 
to b,, . . . .b,.,, yields an expression for the first term of expression 12 that 
is of the form 

n - k 

HI, I   f 
i(l y dhj ^''i_| (12a) 

i-i I-I 
where the sets Bf     result from integrating over the various Af   with respect 
to b,, . . . .b,.,, and the coefficients Cf depend on ( due to the effect of integrat- 
ing //-i» with respect to b,, . . . ,b,_i, over the set A'f . 

Now suppose that \i, . . . .X,,-!,.! are decision rules that are feasible for 
the first «- k -1 periods.   Then the problem of finding X*, ). is of the form 
maximize 

subject to 

IM-(;-1 

I'.l' 

r„-k("„- 

n - I; - 1 n-k-l 
n—k 'ti~ k-] I Jh., 

■ le   \i- (; 

-k-l 

i.    ( 
I-I 

,.) 

■I;-I 

n-k-l 

-k-l 
Jh. 

i,(V,-   -"»/i,,., 13) 

where the c"f~k depend on i, as explained above.   However, c"' is constant for 
each ' and hence Problem 13 can be written as a series of problems (one for 
each '.(i'n~k''), each of which is equivalent to Problem 5 with s^n-k and cs 

c"" .   Hence the results of Corollary 1 can be applied again, and hence Theorem 
3 has been proved for I =k+ 1. 

Therefore, the theorem is proved by induction. 
Corollary 2.   X*   / = 1, . . . ,ri is a piecewise linear function of u, 

H* 
1,.. 

Proof.   By Theorem 3, \* is either zero or a linear function of \t, k    1, 
andf-HT  ), ffi"-', i = 1 ,1 

. . . ,)-!, OJ, , and/■''( Tf*); hence it is a piecewise linear function of w , and 
f-'U'*), a,id X*k, k= 1 |-1.   Since this is also true for \l . k   1  
the corollary is proved. 

fl. 

13 



Uniortunately the fact that cf  in Problem 13 depends on t makes it im- 
possible to extend the results of Theorem 2 to the general n-stage problem. 
For in this case the Lagrangian solution of Problem 10 will yield a Ts* that 
depends on t for the same reason that the coefficient c"~   in the objective func- 
tion of Problem 13 depends on '. 

However, the following theorem can be proved.   An alternative and some- 
what simpler proof is given in App B. 

Theorem 4 

If none of the constraints P(.\.   .- 0)  • &.,] -I, . . . ,n in Problem 3 are 
tight, then for each i, |    I, . . . ,ti, T^   defined in Theorem 3 can take on only 
one ol the three values  V(!, or  *'(., or T   , where ty', W'^ are defined as in 
Theorem 2 and  V'/ .  T1*  •  »,,' for all 'c i''"1 . 

Proof.   Suppose the constraints P{Xj 2 0} ? /3j, j = 1, . . . ,« are not binding 
in Problem 3.   Then the sign of \* in any set A^- , UV'-1 need no longer be of 
concern.  In particular, in Problem 5 the additional constraint that Xs * 0 il 
'cI' and \s ■- 0 if 'f J' is not needed. 

Thus in the proof of Theorem 1 the change of variable Xs = 2^ need not be 
made since the sign of \s in \(~ can be allowed to change. Again, using varia- 
tional theory  gives in place of Eq 7 that 3II     Xs - 0 implies 

".J\^X ■ ^«M\ • ■■)   "■ (7a) 

Thus only Eq 8b can hold and hince 
1 <i 

1   ,- -1 \*       ~ — V . _("-' 1 r;*) (14) 

in each As.-' . 
Theorem 2 can then be proved as above. 
Again Theorem 3 is seen to hold for l - 1 and, assuming it is true for t =fe, 

the effect of X*,^! . • • • . X* on the objective function of Problem 13 is to make 
c"~  independent of I, (i.e., c1~k - c"'"ior all ^ei'"",!, where c" k is a constant). 
This is true because Eq 14 implies that X*, j =n-fe* 1, . . . ,n is strictly linear 
in Xn_i(, not piecewise linear as it was in the previous case.   Hence in Eq 11, 
summing is over jUl^ (fi'1 "', and hence the first term of expression 12 can be 
written in the form 

ri - »,- 

I 

where the sum of the integrals over all A1,-   has been dropped and replaced by 
an integration over (^  ,, since it is known that Ql_l      1, ii-'^i'   •   But in this 
case when integration is performed with respect to b,, . . . ,!),_, the resulting 
value of the integral is 1, since the integration is performed over all possible 
values of these random variables, not just some of the values as in the proof 
of Theorem 3.   Hence, in place of expression 12a, there is obtained 

11 -1.- 

i.    I    . . .  I .'X'dh. ab     , , 

14 
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where 1 is a onstant. 
Thi mean that the problem that mu t b olv d to determine X11 _ 11 i the 

same as Problem 4 with .: n - lr and -= n- k. Thu Corollar 1 can b u d t 
find ).~ - l:t and hen e Theorem 4 i hown to be true for 1 = lr 1. 

Thus the theorem i proved b indu tion. 

5. AN EXTEN I N F THE RES LT 

In this se tion an extension of Theorem 3 i e tabli h d. Supp that 
c, . i = 1, ... ,n are ontinuous random variabl . u r. r. ( b, , . .. ,b,. • • 
. . . , c,) = the joint frequen y fun tion of the rand m v riable b1, 1,1 = 1, . .. ,i, 
if it is assumed that (11 i a known fr quen fun tion and if ' X, ( b 1, •• • , b1_ 1 , 

c ,, • • . ,c 1_ .); then Problem 2 be omes 
maximize 

subje t to 

"IC" ( d, ) f ·-· · · (f, [- I ~ I ~ ', - ~':] , - I 
0,_1 

,_, 
" tH IJ ) d ( ) - C< , I 

I 
I .... ,II , 

P ( ', - 0) ~ ~I' I I , ... , 11 , 

i the lo ur of the et in 2(•- 1) -dimen ional Eu lidean pa where 
1

_ 1 

where f1_ 1 

... ,j - 1. 
onditional expe tation of c 1 given bt~t Cf1, lr = 1, 

Then it an b e tab i h d th t Lemma 1 
{ Ay- 1

, ' c~ · -•} i et f 2( - 1)-dimen 
true in thi a , except that -c a i no longer a 
tion of the c nditi nal random ariabl in olved in - . 

0 

fun -

Thu Problem 9 i no lon r a pr blem in d termining a on- tant r~ but 
rather one of findin g a fun ti n I" and h n e th La ran multipli r t hnique 
u ed to tabli h Th or m 2 will not work. 

H wev r, Th or m 3 n b pr v d just a 
1 b -! . Thu lh followin r ult ha b en e 

bo b r pla ing 

Th or m 5 

If in Probl m 3 it i um d th t 1 , b1 , 1 i = 1, ... , n re 
,thenX1 , j = l, ._.., ni api wi lin . rfun 

nd ,- Ty) i = l, . . . ,j,wh r T' i fun tin f b1 • •• ,b1_ 1 , 1, ••• , 

pe ialization f Th or m 2 in ur pr iou paper 1 t th ·-·· 
IND PE :OE 'T RA ID M RJ B E 

R a in to th probl m n id r d in · 2 in which th 1 , 1 -= 1, 
, n ar n t nt . Al o introdu e th additional umpti n that th rand m 
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variables b,, i = 1, . . . ,n are mutually independent. Letf,(.), and F, (.), i = 1, 
. . . ,ti represent the frequency function and the distribution function respec- 
tively of the continuous random variable b,, i   i, . . . ,n. 

In this case several extensions of the previous results are immediately 
available.   First, owing to the assumption about the independence of the b,, 
fs() : fs(-K hence HrHTp*) defined in Corollary 1 equals fj'lT^*), which is a con- 
stant, i.e., not a function of any b,.  Moreover, using the definition of y^and 
the fact that Fs LfrMT/*)] = Fs[fi"HTf*)]is independent of bi, . . . ,»>,_„ gives 
FsLf'-'(T/*)]Fs_1(4~lJ = >V ior 'cl and 'f'•   This implies that 

i rp - r: 
t.-vr1' 

'•D;*) 
• r-'f 

where D^* is some constant i[i [0,1]. 
Using this definition of Fs"

l(Df) permits replacement of f^l{Tf ) by 
Fsl(Dj*) in property vi of (A|~l, 'fi's"'l, which was defined following Theorem i. 

Thus the equivalent of Problem 9 is 
maximize 

f.l.J      "SS 
— p-1 (nj)F, ,(Air1) f"s-lv v 

subject to 

1    c- s / . . . . J 
1.1. J A5-1 

-la. M 

fs.jdb,. . .ahw 

- 'Vr, , iA;,
-1

) i i - a - A, 
i'.I,I       ~ 

(15) 

,15a) 

DJ ^  rs(   X   uM\i   .  ,,].  .ill  ih, bs-i^Ap"1  .ind M, 

II   (b, bs-l'' A^"1   and   I'., 

(15b) 

(15c) 

o _!),;•- i. aii f. :i5d) 

It is clear that Ds* are the optimal D} for Problem 15. 
In solving Problem 15, 15b and 15c constraints can be replaced by 

constraints of the form 

l)J   _    rjk-'l.   for   M , (16) 

and 

l)(: .   F^kpM .   for  PfJ (17) 

where kl ' is a constant that depends on Ap    . 
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Since these constraints give bounds on DJ, Problem 15 can be written in 
a form similar to Problem 10.   This problem is then solved with the result 
that Df* can take on only one of the three values, 0, 1, or Ds*, where 0 < Ds < 1. 
This is the analog of Theorem 2.      t 

Kf-^T1*) is replaced by f-'iDf ), the results of Theorems 3 and 4 can be 
obtained just as they were in Sec 4, only now, in Theorem 4, Dp  can take on only 
the values 0, 1, or D'   for j    1, . . . ,ri. 

Let I,  ä [(.'D'* = J'* for Ui1'-']. 

Let l2 - U:Dj*= 0 for 'cl'-1}. 

Let l, - {'-:D'*-- 1 for 'fi'M). 

Tl.en when Theorem 4 is applicable (i.e., when the constraints P(X)   ■ 0) a 

'-' "ii. 

ß , ]    1, . . .n,    are not binding), 

• i i.... if- i -'-'\* 

- . f,-1' ""')',-. 

rr'i .,) i-iJhi dh 

ab. 

l-l 

- 1 

i '•'i    \!." 

■ i  (i 

k   i ", 
K rr'111 ),-i'"'i ■ db. 

i'ipij.i,   ^ll-| 
I J h I . . . (i h      | 

P-1 d)1* )    S   F,   , (A'-'i 
1 r. 11 '      ' 

oi  i  r,  ,<A'-
1
) . f -'MI I r   , ' V"'1 

PH„ ■»7 
i'i, 

i-i     I' 

However, it is known that Q,,,      Pfi')-1 ^1' ' anc* t'iat ' '• '-»' ' Partition 'he 
set of indexes 'fV1-'.   Thus the first term in this expression does not depend on 
the choices of A1"'.   In other words this first term is known when \J , k- 1, 
... ,(-1 and is independent of the choice of [Ajr1 , 'fi'*' 1 and D'*.   Moreover, 
using the expression for \ , 

■ J'F,(V; • X'oM • ■■,)(,-I^I   >" 

i.i, i-i •(■ 
,i-i \-'i. 

i -1 ',-i'S   ' 

Hence, when the constraints PIV,   . 0) ^ ^^ | = 1, . . . ,n are not binding, to find 
the [Ap    , 'fi''"'! and [)'* only thi;s problem needs to be solved: 
maximize 

( "' iD'i   i. 
I'. I, 

i-l      l 
U"11   .   I -'({))   i.   /     .i \ 

I.i, i -1 ' r 
i -'in 
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subject to 

I  - I I !'       , I I I I, I, f. I ":i 

Ü I)1 I    .md 
1.1,.I..I, 

f,.,^;.-1!  - 1 (18) 

Now see that by defining 

1111 

i>,, 
fti. 

S-i'M"'1- 

and assuming D'* is known, Problem 18 can be written as 
maximize 

f  "' (l)1*!«..      4    F"1 'IMC,        ,    f-'tl l(r, 

subject to 

'"*'■,,   •   'M,    -   I"   ', 

(.,,   -0,1      1.2.!. 

(19) 

Problem 19 is a linear programming problem in G^ , i = 1, 2, 3.   Since there 
are three variables and only two constraints, it is known from the theory of 
linear programming that at the optimal solution at least one of the G,, =0, 
i -- 1, 2, 3.   Noting that p-^O) ^ Fj-'tO'*) > Fj-'U) as 0 ^ D1* - 1 and that Ff1 is 
a nondecreasing function, it can be seen that at the optimum Gj, = 0. 

Moreover, the first constraint of Problem 19 must be satisfied as an 
equality at the optimum; otherwise D'* could be increased, thus increasing the 
value of the objective function and so contradicting the assumption of optimality 
of D'*.   Therefore it may be found from the constraints of Problem 19 that 

'"' '■,', I  - 
i -I)1' 

(20) 

are the optimal values of G,, and G^ respectively.   These give expressions for 
the optimal G,,, i - 1, 2, 3 in terms of D1*. 

It remains to determine D'* by solving 
maximize 

l _l (I)1» 
i -l)' 

f.-'-l) 

subject to 
i)      I)1 ■_ i 

i -l) 

(21) 
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I 

By solving this nonlinear programming Problem 21, D1* is obtained, and by using 
Eq 20, G'fj and G* are obtained.   Thus \* has been obtained explicitly for the case 
where Theorem 4 is applicable (i.e., where the constraints I'l \,     0) - /i,, |    1, 
■ . ■ ,n   are not tight), and the random variables are independent. 

Moreover, this entire development did not depend on \J, fc= 1, , . . ,j -1 
since Problem 18 does not explicitly involve the decision rules of the preceding 
periods.   Thus the results on \* are valid for all |, | - 1, . . . ,n, and hence 
Theorem 6 has been proved. 

Theorem 6 

If the constraints P(\| -• 01     0,, | = 1, . . . ,n are not tight, and if the ran- 
dom variables b,, i = 1, . . . ,n are mutually independent, then the optimal de- 
cision rules for Problem 3 are given by 

where D'*  is either 1 or D'*, and { A'I ' , 'ci''~li are any sets for which 
Q,-i      't.i'i-^'f1 and that satisfy Zi. F, ( AV )  " <■<*, and Si, ^(-V,:1 )     Cf, .   More- 
over, D'* is found by solving Problem 21, and G*), Gt, are obtained from Eq 20. 

Thus it has been shown that Problem 3 can be reduced to a problem of 
solving H rather simple nonlinear programming problems of the form of Prob- 
lem 21.   In particular, if each random variable b, , j -1, . . . ,(i  has the same 
distribution, then Problem 21 needs to be solved only once to obtain D1* as a 
function of «,.   This will then give I)1  , | = 1, . . . ,n by putting the corresponding 
0|, | -1, . . . ,n into the expression for D' (Q,). 

It is important to note in this development that, as implied by Theorem 6, 
■ Ai    , 'eV1' ' is not necessarily unique.   Indeed, only the optimal covering of 
Q,., need be selected, subject to the restriction that G*  and G*, have their 
required values.   Thus the question arises as to when this optimal covering 
will be unique.   From Eq 20 it can be seen that this will happen only if D*  - 
1- Q., in which case G*, = 1, Gf,     0, and hence the optimal decision rule is 

' '  " '     '' r I        ' '' n ' 

> 
for all (b,, . . . .b^JcQ,., . 

This development also shows that if Gt, - 0, so that the optimal covering 
of Q      is not unique, and U G*. = i2 - G* , then, in general, two optimal decision 

rules for \, that do not coincide anywhere will exist in Problem 3. 5 for \, that do not coincide 
Another result that is worth noting is 

Theorem 7 

If h,, . . . ,bH are independent random variables, then a necessary condition 
that D,'*     1 for some 'fV^'is that 

19 



and 

Jh 
1   \('rl'i') -0 (22) 

This theorem tan easily be proved by using Lagrange multipliers to solve 
Problem 15.   This result is true for the case n    2 even when the constraint 
P(\j     0) -• ß, is binding.    It is also true for the n-stage problem when none of 
the constraints P( X,      0) • j3| is binding.   Thus we know that G*. r 0 in Theorem 
6 without solving Problem 21 if Condition 22 is not satisfied. 

Again, considering Problem 15, Theorem 8 can be proved. 

Theorem 8 

If the random variables b,, . . . ,bM  are independent, then a necessary 
condition that D^* -- 0 for some 'd' ' is that fV'lO)     - o and either Fs(kp" ) = 0 
or fN     F^'IO)^  •fsLFs'

l(D, )^, where ki''~  is defined in constraints 16 and 17. 
This theorem holds for the case n = 2 even when the constraint P( .\2 ■ 0) ^ 

ß-, is uinding.   In RAC-TP-1741, Theorems 7 and 8 are used to solve explicitly 
for the optimal decision rules of a particular two-period problem. 

7.   LI "EAR PROGRAMMING UNDER UNCERTAINTY 

A special case of Problem 1 that has been considered in the literature is 
the case in which a,, ß. - 1, i, j = 1, . . . ,n.   Such problems have been named 
"linear programming under uncertainty." 

The foregoing work gives the following theorem for this special case. 

Theorem 9 

Let a, = I,i=1,. . . ,n. 
Let 0, - 1,| = 1, . . . ,n. 
Then either \* = 0, or 

i-i 

ü 
II 

T ho 

for all points ( b,, . . . .bj^) f Q._r 

Proof.   From our definition of y* we get >*  = 0 for all ' as a, = I for all i 
implies that 1 - a. = 0 for all i. 

-        - S S -1 
Therefore we must have Fs J-'(T,, )^ - 0 for all points in A(    for tcl, J. 
Therefore f-1 (Tp j = F-'iO) for all points in Ap" , and hence the theorem 

is proved. 
This result is particularly important because it illustrates dramatically 

the restriction of optimal action that occurs when the chance-constrained pro- 
gramming problem is restricted to a problem in linear programming under 
uncertainty.   It should also be noted that the linear-programming-under-uncer- 
tainty problem has no solution for distributions (such as the normal distribution) 
for which ^-'(0) 
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Appendix A 

DERIVATION OF THE EULER EQUATION 

Most texts of the ralculus of variations derive the Euler equation for the 
problem 
maximize 

subject to 
\   ,1' \    ,,ri.l    \'|.) n   , (23) 

In order to do this, they assume that in   a,by (i) exists and is continuous 
and that all second partial derivatives of (>(.) exist and are continuous.   They do 
not consider the case in which (■(.) is not a function of v'(i) and so do not dis- 
cuss what weaker conditions of continuity ;jid differentiability of (1(1,y) are 
sufficient to obtain the Euler equation for this problem.   Hence a derivation of 
the Euler equation for this special case is presented here. 

Consider the problem 
maximize 

/' (,(.. s'.'),/. , (24) 

where it is assumed that ■ d   ;v exists and is continuous in _a,b . and that v(x ) 
is continuous in ^ii,hl. 

Let |(y)      ■',(.  i,v(i).dx. 
Let v (x) give a relative strong maximum to / (y), i.e., J (v)     J ( v) for all 

v such that |vtx)-   (v)| < f for all x in .u, b. and some f   • 0. 
Let v(x)     v(x) 4 ff(x) be any other continuous curve such that |v(i) - v(x)|- 

( for all x in .a, b_. 
Let 0(f)     )(v f ff). 
Then, since  v is an extremum for | (y ), ii0(f )   Jf [,   „ = 0,. i.e., 0'(0)  -0^. 
But0(f ) -   'j'Ux.v • ff)Jx,sothat p'(0)      '*{?U(x,\}     vjfUJjx     0, which 

by the lemma of Lagrangc (sec Akhiezer^)* implies that 

'd i. \ 11   for ,,11    1   in   [,i(,] (25) 

"Si (  ulsn Biitcman' for a more cnmpli'tc discussion, including llaar's Icninia. 
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Hence Eq 25 is the Euler equation for Problem 24, and the existence and con- 
tinuity of )G/ jy is a sufficient condition for the derivation of Eq 25. 

The extension of Problem 24 to multiple integral isoperimetric problems 
can be achieved as it is in most texts of the calculus of variations.   Hence 
Problem 5 requires that 

-A V(. A (       ,1      \ a    \ U_| 

exist and be continuous in Ap-1.   This is assured by the definition of  A}1. 
It is interesting to note that no end-point conditions exist on y (ij in 

Problem 24 as in Problem 23.   This is because the Euler equation (25) im- 
plicitly defines y(x), and hence arbitrary end-point conditions would make the 
problem inconsistent.   In the terminology of the calculus of variations there 
are the "natural conditions" at the end points in Problem 24.   This is also the 
case in Problem 5. 
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Appendix ft 

AN ALTERNATIVE PROOF OF THEOREM 4 

In Theorem 4 it is shown that the results of Theorem 2 could be extended 
to the complete n-period model if it is assumed that the constraints PIX, a ß^, 
j - 1, . . . ,n are not binding.  In this appendix a different and somewhat simpler 
approach is used to establish Theorem 4. 

Problem 1 can be written in the form 
maximize 

,-,', )••■■ i \),-1'"'i ■■■'"',-i 

subject to 

-*" ''',> i--jf,(- y^,\ - "■;)/,-!'"'!■■■'"', .1 - \.'-1 

l\|    -  0>   .■   /i^ ,- I n. (26' 

Now suppose that the constraints PIX,   ■ 0) * fij, \ = l, . . . ,« are not binding 
in Problem 26.   Let H, , i = I, . . .« by 

Then, by inverting these equations to get \. as a function of u,, i = 1, . . . ,|, 

U i s "I 

"11   "11 

u .'hi I i u.i 

u ,„ u,,     ■■     ' .1.,,.    ' 

u ,., a.,.. 22   L    U|lJ a.,., a. 
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or, in reneral , 
I 

'. ! h 1 , . • . , 1J ,_ 1l- , ;
1

r,
1

u
1
(b 1 . . .. , b

1
_ 1 l 

, r 
I ~ -d11 tu( hl, .. ., b

1
_ , ). 1• 1 , ... , 11 , ( 27) 

J~ l I I 

where the r, 1• i j = 1, ... ,n are constants that depend on the a, i and di . 
Putting Eq 27 into Problem 26 and ignoring th~ ,3 1 onstraint hows that 

Problem 26 is equi alent to 
maximize 

subje t to 

>-!'n ( 1, ) J .... J r, ( u, (bl ' .. . , , ,_ , )) f,_, dbl ... db, _ , ;,.;' I • I ' . ... II . (28) 

This is equivalent to 
11 

.•.. J ,. 
1 I 

maximize 
H II 

' 1····-' ~ •,r, 1u,f1_ 1 dh 1 .•. .-th1 _ 1 
p.J .-, 

subje t to 

In tran formin Problem 28 into Probl m 29, the re gi n of integration 
wa hanged from Q, _, to Q1_ , . Thi was done b fir t ob erving that in the 
obje tive fun tion of Problem 28 u1 is b ing int grated, and, in our numeration, 
i ::! j. Now if i j, the term ,r,1u1 ( b1 •• • ,b1_ ,) can be fa tored out ide th 
integral ign, and the integration of f,_1 can be performed with r pe t t 
b
1

, bJ+ 1 , ••• , b1_ 1 • This mean that int gration is being perform d ov r all 
pos ible alue of the e random va riable . Hen e the value f this int gration 
is 1' and inte ration mu t be performed over o, _, . 

However, Problem 29 i n w eparable into the foll owing n di s tinct and 
unrelated problem of determining 14 " j - 1, ... , n, viz, 
maximize 

subje t to 
( 30) 

Sin e Problem 30 i a pecial a of Probl m 4, w can pro d to s lv 
Problem 30 ju t as Problem 4 wa olved. Es ta li s h that a n · ary c ndition 
tha_t 14~ maximize Probl m 30 i that there ~xist a ·ov rin r of Ql_ ', sa 
( A1-

1
, d ?J- I ' , uch that u

1 
= f";~ T~) in ~- 1 , £~1- ', here T\• can hav nl y 

three pos ible valu , 1!/ , or TJ . 
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If it is now assumed that the random variables are independent, ~ can be 
defined as was done in Sec 6 and the optimal OJ and A1 an be found as was 
outline.d in th~ de elopment pre edin~ T.h: orem 6. ~hus ~~~ is detern;in~~ · 

Sm e th1s can be done for ea h 1 , 1 - 1, . .. , n 1n Problem 30, u1 , 1- 1, 
... ,n an be found . Substituting these expressions into Eq 27, 

I I f 
' , . IJ 

1
- l ' OJ " r ' - T ~>•, 

I l J 

1- l II 

~ -~-' \ 
1 l 11

11 
J 

whi h agrees with the previous results. 
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